可视化 #
通过 print
输出每个 bar 的信息不利于我们阅读,我们还是更倾向于图表的视觉效果。backtrader 内置了图表绘制的能力,一行代码即可绘图。
cerebro.plot()
请确保在调用cerebro.run()
之后执行,还有,backtrader
的绘图能力依赖 matplotlib。
演示 #
为了展示出基本的价格和收益外,我们将执行以下操作以展示绘图的功能和配置。
- 添加一个 EMA(指数移动平均线),默认情况下,它会与数据一起绘制。
- 添加一个 WMA(移动平均线加权),配置在子图绘制(即使没有意义)。
- 添加一个 StochasticSlow(慢速随机指标),不更改默认设置。
- 添加一个 MACD,不更改默认设置。
- 添加一个ATR,更改默认设置以避免绘图。
- 添加一个 RSI,不更改默认设置。
- 在 RSI 上添加一个 SMA 指标,不更改默认设置,且与RSI一起绘制。
在策略的 __init__
方法中添加的所有内容:
# Indicators for the plotting show
bt.indicators.ExponentialMovingAverage(self.datas[0], period=25)
bt.indicators.WeightedMovingAverage(self.datas[0], period=25).subplot = True
bt.indicators.StochasticSlow(self.datas[0])
bt.indicators.MACDHisto(self.datas[0])
rsi = bt.indicators.RSI(self.datas[0])
bt.indicators.SmoothedMovingAverage(rsi, period=10)
bt.indicators.ATR(self.datas[0]).plot = False
即使将指标没有赋值到策略成员变量(如self.sma = MovingAverageSimple…
),它们也会被注册到策略中,成为图表的一部分。
示例中,只有RSI被添加到临时变量rsi中,其目的是要在其上创建一个 SmoothedMovingAverage。
from __future__ import (absolute_import, division, print_function,
unicode_literals)
import datetime # For datetime objects
import os.path # To manage paths
import sys # To find out the script name (in argv[0])
import backtrader as bt
class TestStrategy(bt.Strategy):
params = (
('maperiod', 15),
)
def log(self, txt, dt=None):
dt = dt or self.datas[0].datetime.date(0)
print('%s, %s' % (dt.isoformat(), txt))
def __init__(self):
self.dataclose = self.datas[0].close
self.order = None
self.buyprice = None
self.buycomm = None
self.sma = bt.indicators.SimpleMovingAverage(
self.datas[0], period=self.params.maperiod)
# Indicators for the plotting show
bt.indicators.ExponentialMovingAverage(self.datas[0], period=25)
bt.indicators.WeightedMovingAverage(self.datas[0], period=25,
subplot=True)
bt.indicators.StochasticSlow(self.datas[0])
bt.indicators.MACDHisto(self.datas[0])
rsi = bt.indicators.RSI(self.datas[0])
bt.indicators.SmoothedMovingAverage(rsi, period=10)
bt.indicators.ATR(self.datas[0], plot=False)
def notify_order(self, order):
if order.status in [order.Submitted, order.Accepted]:
return
if order.status in [order.Completed]:
if order.isbuy():
self.log('BUY EXECUTED, Price: %.2f, Cost: %.2f, Comm %.2f' %
(order.executed.price,
order.executed.value,
order.executed.comm))
self.buyprice = order.executed.price
self.buycomm = order.executed.comm
else:
self.log('SELL EXECUTED, Price: %.2f, Cost: %.2f, Comm %.2f' %
(order.executed.price,
order.executed.value,
order.executed.comm))
self.bar_executed = len(self)
elif order.status in [order.Canceled, order.Margin, order.Rejected]:
self.log('Order Canceled/Margin/Rejected')
self.order = None
def notify_trade(self, trade):
if not trade.isclosed:
return
self.log('OPERATION PROFIT, GROSS %.2f, NET %.2f' %
(trade.pnl, trade.pnlcomm))
def next(self):
self.log('Close, %.2f' % self.dataclose[0])
if self.order:
return
if not self.position:
if self.dataclose[0] > self.sma[0]:
self.log('BUY CREATE, %.2f' % self.dataclose[0])
self.order = self.buy()
else:
if self.dataclose[0] < self.sma[0]:
self.log('SELL CREATE, %.2f' % self.dataclose[0])
self.order = self.sell()
if __name__ == '__main__':
cerebro = bt.Cerebro()
cerebro.addstrategy(TestStrategy)
modpath = os.path.dirname(os.path.abspath(sys.argv[0]))
datapath = os.path.join(modpath, '../../datas/orcl-1995-2014.txt')
data = bt.feeds.YahooFinanceCSVData(
dataname=datapath,
fromdate=datetime.datetime(2000, 1, 1),
todate=datetime.datetime(2000, 12, 31),
reverse=False)
cerebro.adddata(data)
cerebro.broker.setcash(1000.0)
cerebro.addsizer(bt.sizers.FixedSize, stake=10)
cerebro.broker.setcommission(commission=0.0)
print('Starting Portfolio Value: %.2f' % cerebro.broker.getvalue())
cerebro.run()
print('Final Portfolio Value: %.2f' % cerebro.broker.getvalue())
# Plot the result
cerebro.plot()
执行后的输出:
Starting Portfolio Value: 1000.00
2000-02-18, Close, 27.61
2000-02-22, Close, 27.97
2000-02-22, BUY CREATE, 27.97
2000-02-23, BUY EXECUTED, Size 10, Price: 28.38, Cost: 283.80, Commission 0.00
2000-02-23, Close, 29.73
...
...
...
2000-12-21, BUY CREATE, 27.82
2000-12-22, BUY EXECUTED, Size 10, Price: 28.65, Cost: 286.50, Commission 0.00
2000-12-22, Close, 30.06
2000-12-26, Close, 29.17
2000-12-27, Close, 28.94
2000-12-28, Close, 29.29
2000-12-29, Close, 27.41
2000-12-29, SELL CREATE, 27.41
Final Portfolio Value: 981.00
因为交易逻辑没有修改,故而结果和上节一样,图表如下: